skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lu, Jiayin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hypo-elastoplasticity is a framework suitable for modeling the mechanics of many hard materials that have small elastic deformation and large plastic deformation. In laboratory tests for these materials the Cauchy stress is often in quasi-static equilibrium. Rycroft et al. discovered a mathematical correspondence between this physical system and the incompressible Navier–Stokes equations, and developed a projection method similar to Chorin's projection method (1968) for incompressible Newtonian fluids. Here, we improve the original projection method to simulate quasi-static hypo-elastoplasticity, by making three improvements. First, drawing inspiration from the second-order projection method for incompressible Newtonian fluids, we formulate a second-order in time numerical scheme for quasi-static hypo-elastoplasticity. Second, we implement a finite element method for solving the elliptic equations in the projection step, which provides both numerical benefits and flexibility. Third, we develop an adaptive global time-stepping scheme, which can compute accurate solutions in fewer timesteps. Our numerical tests use an example physical model of a bulk metallic glass based on the shear transformation zone theory, but the numerical methods can be applied to any elastoplastic material. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026